I B.TECH - EXAMINATIONS, DECEMBER - 2010
 NETWORK ANALYSIS
 (COMMON TO ECE, EIE, BME, ETM, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Distinguish between:
i) Ideal and practical sources and
ii) Dependent and independent sources.
b) The current in a 15 mH inductor can be expressed as $i(t)=\left[2-e^{-1000 t}\right] \times 10^{-3} \mathrm{Amps}$.

Find:
i) The voltage across the inductor $u(t)$ and
ii) The instantaneous power $p(t)$.
c) Write the basic Tie set matrix for the graph shown in figure, taking the Tree consisting of branches $2,3,4$.
[4+6+6]

2.a) Obtain the conductively coupled T-equivalent for the magnetically coupled circuit shown in figure.

b) An Iron ring has a mean diameter of 25 cms , and a C.S. area of $4 \mathrm{~cm}^{2}$ and is wound with 1000 Turns. An air gap of 1.5 mm width is cut in the ring. Determine the current required in the coil to produce a flux of 0.1 mwb in the air gap. The relative permeability of Iron is 800 . Neglect leakage.
3.a) Define Q-factor. Derive an equation showing the relation between Q-factor and Band width. What is selectivity and how it is related to Q-factor.
b) Derive the expression for $i(t)$ when the switch S is suddenly closed at $t=0$ in the circuit shown in figure. Sketch the variation of $i(t), v_{R}(t)$ and $v_{L}(t)$ with respect to Time.
Code.No: R05010401
R05

SET-1

What is the time constant of the above circuit and explain its significance? [8+8]
4.a) Define RMS value, Average value and form factor of an alternating quantity. Determine these values for the periodic function shown in figure.

b) A series R-L circuit with $\overline{\mathrm{R}}=5$ ohms and $\mathrm{L}=0.2 \mathrm{H}$ has an applied voltage source of $v(t)=10 e^{-100 t}$ applied at $t=0$. Determine the current through the circuit $i(t)$. Use Laplace Transform method of solution.
5.a) State and explain Norton's Theorem.
b) Obtain Norton's Equivalent for the circuit shown with respect to terminals A and B.

c) Obtain the branch currents in the circuit shown and draw the phasor diagram. [4+6+6]

6.a) Find the driving point impedance function $\mathrm{Z}_{11}(\mathrm{~S})$ of the LC network shown in figure.

b) Determine the ' h ' parameters of the network shown in figure.
[8+8]

7.a) Explain clearly the following terms:
i) Propagation constant and
ii) Attenuation.
b) A symmetrical T -section has an inductance of 0.47 H in each series arm and a $300 \mu \mathrm{~F}$ capacitor in the shunt arm.
i) Find the characteristic impedance at frequencies of 50 Hz and 100 Hz .
ii) If the T-section is terminated in the characteristic impedance, find the ratio of load current to input current at both the frequencies.
8.a) What is an LC immittance function? State the properties of such functions.
b) Design a constant ' K ' T -section low pass filter having cutoff frequency of 2 kHz and nominal characteristic impedance of 600 ohms.

I B.TECH - EXAMINATIONS, DECEMBER - 2010
 NETWORK ANALYSIS (COMMON TO ECE, EIE, BME, ETM, ECC)

Time: 3hours

Answer any FIVE questions
 All questions carry equal marks

1.a) Define Q -factor. Derive an equation showing the relation between Q -factor and Band width. What is selectivity and how it is related to Q-factor.
b) Derive the expression for $i(t)$ when the switch S is suddenly closed at $\mathrm{t}=0$ in the circuit shown in figure. Sketch the variation of $i(t), v_{R}(t)$ and $v_{L}(t)$ with respect to Time.

What is the time constant of the above circuit and explain its significance? [8+8]
2.a) Define RMS value, Average value and form factor of an alternating quantity. Determine these values for the periodic fụnction shown in figure.

b) A series R-L circuit with $\mathrm{R}=5$ ohms and $\mathrm{L}=0.2 \mathrm{H}$ has an applied voltage source of $v(t)=10 e^{-100 t}$ applied at $\mathrm{t}=0$. Determine the current through the circuit $i(t)$. Use Laplace Transform method of solution.
3.a) State and explain Norton's Theorem.
b) Obtain Norton's Equivalent for the circuit shown with respect to terminals A and B.

c) Obtain the branch currents in the circuit shown and draw the phasor diagram. [4+6+6]

4.a) Find the driving point impedance function $\mathrm{Z}_{11}(\mathrm{~S})$ of the LC network shown in figure.

b) Determine the ' h ' parameters of the network shown in figure.

5.a) Explain clearly the following terms:
i) Propagation constant and
ii) Attenuation.
b) A symmetrical T -section has an inductance of 0.47 H in each series arm and a $300 \mu \mathrm{~F}$ capacitor in the shunt arm.
i) Find the characteristic impedance at frequencies of 50 Hz and 100 Hz .
ii) If the T-section is terminated in the characteristic impedance, find the ratio of load current to input current at both the frequencies.
[6+10]
6.a) What is an LC immittance function? State the properties of such functions.
b) Design a constant ' K ' T -section low pass filter having cutoff frequency of 2 kHz and nominal characteristic impedance of 600 ohms.
7.a) Distinguish between:
i) Ideal and practical sources and
ii) Dependent and independent sources.
b) The current in a 15 mH inductor can be expressed asi $(t)=\left[2-e^{-1000 t}\right] \times 10^{-3} \mathrm{Amps}$. Find:
i) The voltage across the inductor $u(t)$ and
ii) The instantaneous power $p(t)$.
c) Write the basic Tie set matrix for the graph shown in figure, taking the Tree consisting of branches 2, $3,4$.
[4+6+6]

8.a) Obtain the conductively coupled T-equivalent for the magnetically coupled circuit shown in figure.

b) An Iron ring has a mean diameter of 25 cms , and a C.S. area of $4 \mathrm{~cm}^{2}$ and is wound with 1000 Turns. An air gap of 1.5 mm width is cut in the ring. Determine the current required in the coil to produce a flux of 0.1 mwb in the air gap. The relative permeability of Iron is 800 . Neglect leakage. [8+8]
--oOo--

I B.TECH - EXAMINATIONS, DECEMBER - 2010
 NETWORK ANALYSIS
 (COMMON TO ECE, EIE, BME, ETM, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) State and explain Norton's Theorem.
b) Obtain Norton's Equivalent for the circuit shown with respect to terminals A and B.

c) Obtain the branch currents in the circuit shown and draw the phasor diagram. [4+6+6]

2.a) Find the driving point impedance function $\mathrm{Z}_{11}(\mathrm{~S})$ of the LC network shown in figure.

b) Determine the ' h ' parameters of the network shown in figure.

3.a) Explain clearly the following terms:
i) Propagation constant and
ii) Attenuation.
b) A symmetrical T -section has an inductance of 0.47 H in each series arm and a $300 \mu \mathrm{~F}$ capacitor in the shunt arm.
i) Find the characteristic impedance at frequencies of 50 Hz and 100 Hz .
ii) If the T-section is terminated in the characteristic impedance, find the ratio of load current to input current at both the frequencies.
4.a) What is an LC immittance function? State the properties of such functions.
b) Design a constant ' K ' T -section low pass filter having cutoff frequency of 2 kHz and nominal characteristic impedance of 600 ohms.
5.a) Distinguish between:
i) Ideal and practical sources and
ii) Dependent and independent sources.
b) The current in a 15 mH inductor can be expressed as $i(t)=\left[2-e^{-1000 t}\right] \times 10^{-3} \mathrm{Amps}$.

Find:
i) The voltage across the inductor $u(t)$ and
ii) The instantaneous power $p(t)$.
c) Write the basic Tie set matrix for the graph shown in figure, taking the Tree consisting of branches $2,3,4$.
[4+6+6]

6.a) Obtain the conductively coupled T-equivalent for the magnetically coupled circuit shown in figure.

b) An Iron ring has a mean diameter of 25 cms , and a C.S. area of $4 \mathrm{~cm}^{2}$ and is wound with 1000 Turns. An air gap of 1.5 mm width is cut in the ring. Determine the current required in the coil to produce a flux of 0.1 mwb in the air gap. The relative permeability of Iron is 800 . Neglect leakage.
7.a) Define Q-factor. Derive an equation showing the relation between Q -factor and Band width. What is selectivity and how it is related to Q-factor.
b) Derive the expression for $i(t)$ when the switch S is suddenly closed at $\mathrm{t}=0$ in the circuit shown in figure. Sketch the variation of $i(t), v_{R}(t)$ and $v_{L}(t)$ with respect to Time.

What is the time constant of the above circuit and explain its significance? [8+8]
8.a) Define RMS value, Average value and form factor of an alternating quantity. Determine these values for the periodic function shown in figure.

b) A series R-L circuit with $\mathrm{R}=5$ ohms and $\mathrm{L}=0.2 \mathrm{H}$ has an applied voltage source of $v(t)=10 e^{-100 t}$ applied at $t=0$. Determine the current through the circuit $i(t)$. Use Laplace Transform method of solution.
[8+8]

I B.TECH - EXAMINATIONS, DECEMBER - 2010
 NETWORK ANALYSIS
 (COMMON TO ECE, EIE, BME, ETM, ECC)

Time: 3hours
Max.Marks:80

Answer any FIVE questions
 All questions carry equal marks

1.a) Explain clearly the following terms:
i) Propagation constant and
ii) Attenuation.
b) A symmetrical T -section has an inductance of 0.47 H in each series arm and a $300 \mu F$ capacitor in the shunt arm.
i) Find the characteristic impedance at frequencies of 50 Hz and 100 Hz .
ii) If the T-section is terminated in the characteristic impedance, find the ratio of load current to input current at both the frequencies.
2.a) What is an LC immittance function? State the properties of such functions.
b) Design a constant ' K ' T -section low pass filter having cutoff frequency of 2 kHz and nominal characteristic impedance of 600 ohms.
3.a) Distinguish between:
i) Ideal and practical sources and
ii) Dependent and independent sources.
b) The current in a 15 mH inductor can be expressed as $i(t)=\left[2-e^{-1000 t}\right] \times 10^{-3} \mathrm{Amps}$.

Find:
i) The voltage across the inductor $u(t)$ and
ii) The instantaneous power $p(t)$.
c) Write the basic Tie set matrix for the graph shown in figure, taking the Tree consisting of branches $2,3,4$.

4.a) Obtain the conductively coupled T-equivalent for the magnetically coupled circuit shown in figure.

b) An Iron ring has a mean diameter of 25 cms , and a C.S. area of $4 \mathrm{~cm}^{2}$ and is wound with 1000 Turns. An air gap of 1.5 mm width is cut in the ring. Determine the current required in the coil to produce a flux of 0.1 mwb in the air gap. The relative permeability of Iron is 800 . Neglect leakage.
5.a) Define Q-factor. Derive an equation showing the relation between Q-factor and Band width. What is selectivity and how it is related to Q-factor.
b) Derive the expression for $i(t)$ when the switch S is suddenly closed at $t=0$ in the circuit shown in figure. Sketch the variation of $i(t), v_{R}(t)$ and $v_{L}(t)$ with respect to Time.

What is the time constant of the above circuit and explain its significance?
6.a) Define RMS value, Average value and form factor of an alternating quantity. Determine these values for the periodic function shown in figure.

b) A series R-L circuit with $\mathrm{R}=5$ ohms and $\mathrm{L}=0.2 \mathrm{H}$ has an applied voltage source of $v(t)=10 e^{-100 t}$ applied at $t=0$. Determine the current through the circuit $i(t)$. Use Laplace Transform method of solution.

SET-4
7.a) State and explain Norton's Theorem.
b) Obtain Norton's Equivalent for the circuit shown with respect to terminals A and B.

c) Obtain the branch currents in the circuit shown and draw the phasor diagram. [4+6+6]

8.a) Find the driving point impedance function $\mathrm{Z}_{11}(\mathrm{~S})$ of the LC network shown in figure.

b) Determine the ' h ' parameters of the network shown in figure.

--oOo--

